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Abstract. We present a new method, based on averaging, to simulate certain systems with multiple time
scales efficiently and demonstrate its utility in the context of the shallow-water equations. We first develop
the method in a simple linear setting and analytically prove its stability. This is followed by an extension to
the full equations and a presentation of a computational model for it. In this preliminary study, we find that
the new method produces results that are very close to a fully explicit (spatially and temporally) second-order
accurate scheme and much better than a fully explicit (spatially and temporally) first-order accurate scheme,
while costing less than the first-order accurate scheme.

1. Introduction

The simulation of physical processes with multiple time scales provides a severe challenge to the numerical
modeler. Fully explicit methods must employ the most restrictive time step associated with ensuring the
stability of the fastest waves, and so may be prohibitively expensive. Thus, in addition to implicit and
semi-implicit methods, a variety of alternate strategies have been developed, each more specially adapted
for particular flows. The purpose of this paper is to describe a new method for treating flows with multiple
time scales. We have chosen to illustrate the methodology in the context of shallow fluid approximations of
ocean-basin circulations. Nevertheless, the method itself does not depend on the details of such flows and
is likely to be more generally applicable to other problems with multiple time scales.

The circulations in the atmosphere and the oceans, as approximated by even the highly simplified shallow-
water equations, are two examples of flows with multiple time scales. In both cases the fastest waves are the
gravity waves, with speeds up to a few hundred meters per second. In the atmosphere, material motions tend
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for Atmospheric Research is sponsored by the National Science Foundation.
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to be slower by a factor of about four, whereas material motions in the ocean are much slower. This has led
to different algorithmic strategies—atmospheric models typically use split-explicit methods whereas ocean
models depend on modal decomposition.

Split-explicit methods take advantage of the separation between the fast modes and slow modes by
splitting the exact solution operator into fast and slow parts and using small time steps only on the fast part.
Such a method then requires less work than using small time steps on the full unsplit problem provided the
accuracy is not too adversely affected by the splitting errors (LeVeque and Oliger, 1983). These methods
have a long lineage and are based on variations of schemes originally proposed by Marchuk (1974) and
Strang (1968). Of particular interest to the meteorological community have been the splitting schemes of
Klemp and Wilhelmson (1978; KW) and Mesingeret al. (1988). Analyses of the destabilizing effects of
the splitting errors and the reduction in the order of accuracy due to a consequent use of filters, along with
efficiency issues of these methods have been considered by many workers and the interested reader is referred
to LeVeque and Oliger (1983), Skamarock and Klemp (1994), Browning and Kreiss (1994), and references
therein.

The underlying idea of modal decomposition is the separation of the flow into a fast and a slow part
(Bryan, 1969). Based on physical reasoning, the fast motions are identified with the column-averaged
motion. Because this part of the flow, termed the barotropic component, is two-dimensional, either implicit
methods coupled with efficient elliptic solvers (Dukowiczet al., 1993) or explicit subcycling methods (Bleck
and Smith, 1990) can be used to solve the approximate equations governing these motions. The remaining
part of the flow, termed the baroclinic component, is then integrated explicitly at a time step nearly 20 times
larger. Both strategies lead to significant improvements in computational efficiency over purely explicit
calculations.

The identification of the fast motions with the column-averaged motions is based on a eigenmode analysis
of the linearized equations. In reality, the barotropic and baroclinic motions are coupled by the nonlinearity
of the equations, the bottom topography, and the free surface boundary conditions. This coupling raises the
possibility of “bleeding” of the fast motions into the equations governing the slow motions. For example, the
theoretical and computational studies of Higdon and Bennett (1996) point to such a bleeding as a possible
reason for the large amount of time filtering that is necessary to ensure stability of computations in the Miami
Isopycnic Coordinate Ocean Model (MICOM).

In this paper we propose an alternate computational approach that isnotbased on modal decomposition.
As discussed by Browning and Kreiss (1987), when the time step is restricted by the fast waves, errors
in geophysical fluid dynamic simulations are dominated by spatial errors. Thus, our method begins with a
low-order integration of a set of equations which allows for both the fast modes and the primary balances
of the original system. At this stage the fast modes of the system are explicitly resolved and the evolution
is continued forM steps, whereM is approximately the ratio of the slow time scale to the fast time scale.
This provisional low-order solution is then averaged in time over theM steps to provide a representative
slow time scale solution. This solution in turn is used in the high-order accurate evolution of the slow time
scale variables over the (single) long time step. While the choice of the set of approximate equations that is
used in the initial step is important and will determine the computational efficiency of the overall scheme, in
this preliminary study we focus on demonstrating the realizability of the strategy. We use the full equation
unless otherwise specified. The choice of more computationally efficient equations for the initial pass will
be the subject of future research. We note that Madala (1981) considered a splitting scheme in the context of
leapfrog time discretization that has similarities to the present scheme, but that an analysis of its stability and
accuracy properties led to the conclusion that there were no advantages over the KW splitting (Skamarock
and Klemp, 1992). (This work was brought to our attention only after initial computational verifications of
our scheme.) The very different nature of the truncation errors and stability properties of a three-time-level
scheme—the framework in which Madala constructed his splitting scheme—and the present framework of
a two-time-level scheme render a direct comparison inconclusive.

Although the methodology is likely to be of greater generality, we illustrate it here in the context of an
idealized ocean problem, which is described in the next section. In Section 3 we develop the method first
in the highly simplified context of one-dimensional gravity wave propagation and demonstrate its linear
stability. This is followed by a generalization of the method to the full nonlinear shallow-water equations
on aβ-plane. Results of simulations employing the method of averaging are presented and compared with
the fully explicit solutions in Section 4. A few concluding remarks complete the paper in Section 5.
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2. Monopole Evolution in a Closedβ-Plane Ocean Basin

Milliff and McWilliams (1994) recently considered the evolution of a monopole vortex in a closed rectangular
β-plane ocean basin in their study elucidating the boundary pressure adjustment process on an ocean-basin
scale. This problem embodies the prototypical interactions that exist in the ocean between the fast, boundary-
trapped signals—the primarily gravitational Kelvin waves—and the slower, open-ocean bulk modes—the
Rossby waves. It is important that a model, either in which the physics of the gravity wave modes are not
fully treated or in which the gravity wave modes are computationally distorted, allows for the above physical
interactions between the fast and slow modes. Hence our choice of problem. We note, however, that the
primary goal of the paper is to demonstrate the new methodology, and not to illustrate any advantage in
accuracy of this method over alternate approaches.

2.1. The Single-Layer Reduced-Gravity Approximation

We consider the problem in the simplified context of the single-layer reduced-gravity shallow-water equations
on aβ-plane:

∂η

∂t
+ ∇ · ηu = 0, (1a)

∂q
∂t

+ ∇ · qu = −g′η∇η − fηẑ× u− ν4η∇4u. (1b)

In (1), η is the depth of the homogeneous fluid layer,q is the depth-averaged two-dimensional horizontal
momentum vector,u = q/η, ∇ is the two-dimensional horizontal gradient operator (∂/∂x, ∂/∂y) with x
pointing east andy pointing north,g′ is reduced gravity,f = f0 + βy is twice the vertical component of the
Earth’s rotation at the north–south locationy, andν4 is the coefficient of biharmonic viscosity. The implied
operation between the two vectorsq andu is the outer or tensor productqiuj . Note that (1b) is written in
conservative form. The corresponding advective form is

∂u
∂t

+ u ·∇u = −g′∇η − f ẑ× u− ν4∇4u. (1b′)

For the closed rectangular domain, the boundary conditions we use are: no flow through the rigid boundaries

u · n̂ = 0, (2a)

wheren̂ is the unit normal, and free slip
∂

∂n̂
(u · ŝ) = 0, (2b)

whereŝ is the unit tangent. The preservation of the global integral relation for potential enstrophy given a
dissipation of the biharmonic form requires

∇2(u · n̂) = 0, (2c)
∂

∂n̂
∇2(u · ŝ) = 0, (2d)

at the boundaries (see Milliff and McWilliams, 1994).
The setup of the problem is identical to that in Milliff and McWilliams (1994): The model domain in

3600 km in the east–west direction and 2800 km north–south, with a grid spacing of 20 km in each direction.
The Coriolis parameters are such that the midbasin latitude is about 38.2 N, and the coefficient of biharmonic
viscosityν4 is 9.3× 109 m4 s−1. The value of reduced gravity is 0.081 m s−2 andη0, the undisturbed depth
of the layer is 1 km, giving a midbasin radius of deformationr of 100 km.
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The initial condition consists of a cyclostrophically balanced (see below) monopole positioned at a
distance 9r offshore of the western boundary at the midbasin latitude. The monopole has a Gaussian profile
with a peak amplitude of the perturbation dynamic pressure of 3.2 m2 s−2 and ane-folding radius of 2r. The
cyclostrophically balanced velocity field is obtained as a solution to the quadratic equation

−u
2
θ

a
= −g′ ∂η

∂a
+ fmiduθ,

whereuθ is the tangential velocity at a distancea from the center of the monopole, andfmid is the Coriolis
parameter at midbasin. The evolution of the monobole at days 80, 160, and 200 are shown in Figure 1. An
algorithmic description of the numerical scheme used in this explicit computation that resolves all relevant
time scales to second-order accuracy is presented at the end of this section.

A synopsis of the phenomenology as described by Milliff and McWilliams (1994) follows: Since the
initial condition is balanced on thef -plane, there is an initial readjustment due to theβ effect. After this, the
monopole evolves in a nonlinear fashion, propagating mostly westward at a rate controlled by the dispersion
of the Rossby wave wake. At day 80, the strong interaction of the monopole with the western boundary
results in a positive boundary-trapped Kelvin wave occupying the entire basin perimeter, whose expand-
ing eastern boundary structure can be interpreted as a Rossby wave front propagating at approximately the

Figure 1. Dynamic pressure anomaly for the reference case, based on explicit time stepping (as in (3b)) of step sizeδt with MPDATA.
Contour intervals are at−1.5, −0.5, −0.45, . . . , −0.05, 0.05, 0.10, . . . , 0.5, 1.5, 2.5 m2 s−2. Negative contours are dashed. Every
second point (ati = 1, 3, 5, . . .) is shown in order to avoid obscuring the results by including a 2δx mode, which is a null mode of the
pressure gradient operator.
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local, long-wave phase speedcl (y) ≈ βr2
l (y) (faster in the south than in the north). At day 120, the large-

scale offshore structure has transitioned into a steeper, smaller scale, boundary-trapped structure, and the
first negative lobe of the Rossby wave now strongly interacts with the western boundary, resulting in the
initiation of a negative structure at the eastern boundary similar in morphology to the positive structure
preceding it. At day 200, the second basin-scale structure is detaching from the eastern boundary and the
southern front of the first structure has now propagated far enough west to catch up with the trailing edge of
the Rossby wave wake formed from the initial condition.

2.2. The Explicit Second-Order Scheme

The governing equations ((1a) and (1b)) may be written symbolicallyas

∂Ψ
∂t

+ ∇ · Ψu = R, (3a)

whereΨ is the vector of dependent variables. Following the development in Smolarkiewicz and Margolin
(1993), a second-order time discretization of the above equations may be written as

Ψn+1 = A2

(
Ψn +

δt

2
Rn+1/2

)
+
δt

2
Rn+1, (3b)

whereα = (uδt/∆x, vδt/∆y), is the vector of local Courant numbers, and whereA2 is a second-order
forward-in-time (FT) scheme for the flux-form, homogenous advection equation (R = 0 in (3a)). The
analogous operator that is first-order accurate in space and time is referred to asA1.

We use an A grid (all variables reside at the same location) with the boundaries passing through the grid
points and MPDATA (Smolarkiewicz and Grabowski (1990) and references therein) forA2. In addition to
the boundary conditions (2),∇4(u · ŝ) at a boundary point is obtained as an extrapolation from within the
domain. The actual update of (1) proceeds in three steps as follows

1. The calculation of the avective velocities at timen + 1
2:

un+1/2 =
(

ũ ≡ un +
δt

2
Rn
u

)
− δt

2
un ·∇ũ, (4a)

whereRu is the momentum forcing divided by the depth, and where first-order accurate upwind
differencing is used in the convective term.

2. The update of the height field:

ηn+1 = A2(ηn,αn+1/2). (4b)

3. The update of the momentum field, and the force computation

q̃ = A2

(
qn +

δt

2
Rn,αn+1/2

)
,

qn+1 = q̃− δt

2
(Rn+1 ≡ −g′ηn+1∇ηn+1− ν4∇4q̃− f ẑ× qn+1). (4c)

3. The Method of Averaging

The algorithm (3b) is a general recipe for second-order accurate integrations of (3a). Its particular realization
depends on the selection of the advection schemeA2 as well as the specific approximations used forαn+1/2

andRn+1. Those summarized in (4) provide simple second-order accurate solutions to (1a) and (1b). However,
for computational stability, they require a time step limited by the propagation speeds of the fastest modes
(see Smolarkiewicz and Margolin, 1993). In order to circumvent this restrictive condition on the time step
and improve computational efficiency, here we consider alternate realizations ofαn+1/2 andRn+1.
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Since the main concern is the handling of the fast modes in (1), we first consider the highly simplified
case of one-dimensional gravity wave propagation in a fluid layer of depthη0 and which is initially at rest.
With the choice of reference quantities

xr = ∆x, ηr = η0, tr = δt, ur =
√
g′η0,

the nondimensionalized equations for this simplified case are

∂η

∂t
= −β ∂u

∂x
, (5a)

∂u

∂t
= −β ∂η

∂x
, (5b)

whereβ =
√
g′η0δt/∆x is the Courant number based on the long gravity wave (long with respect to the

undisturbed depthη0) speed and the time stepδt. Without loss of generality, assumeu = us + uf , whereus

varies only on the slow time scale anduf varies on the fast time scale. We further choose initial and end
conditions foruf such thatuf (t + ∆t) = uf (t) where∆t is a long time step equal toMδt withM > 1. We
decomposeη similarly into its fast and slow components. Integration of (5) over the long time step∆t then
results in

ηs(t + ∆t)− ηs(t)
∆t

(
≈ ∂ηs

∂t

)
= −β ∂u

∂x
, (6a)

us(t + ∆t)− us(t)
∆t

(
≈ ∂us

∂t

)
= −β ∂η

∂x
, (6b)

where the bar indicates averaging over theM + 1 values (see (7)). Thus the scheme for evolving the slow
variables (ηs, us) is first to evolve (5) overM successive gravity-wave resolving time steps, each of length
δt, to obtain the sequence of solutions (ηn+m, un+m),m = 0, . . . ,M. Then we form the weighted averages

u =
M∑
m=0

wmu
n+m, η =

M∑
m=0

wmη
n+m, (7)

with weightswm, and evolve (6) over the large time step∆t.

3.1. Linear Stability Analysis of (6)

The linear stability of (6) proceeds in two steps: the linear stability analysis of (5) and the consequent
analysis of (6). The details of the linear stability for the scheme (4) in the simplified situation of (5) are
summarized below (for details see Appendix B of Smolarkiewicz and Margolin (1993)). Letα = β sinθ,
whereθ = (2π/λ)∆x ∈ [0, π] is a dimensionless wave number corresponding to the wavelengthλ resolved
on the grid andβ is the gravity wave Courant number as defined earlier. The complex amplification factors
r1,2 (one each for the left- and right-going waves) over the time stepδt are given by the two roots of the
quadratic equation

r2− 2r
(

1− α2

2

)
+ 1 = 0.

They are

r1,2 = 1− α2

2
± iα

√
1− α2

4
.

For gravity wave Courant numbersβ such thatβ ≤ 2, the two amplification factors are complex conjugates,
each with unit magnitude and arguments±δ such that

cosδ = 1− α2

2
, sinδ = α

√
1− α2

4
, (8)
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with the square root assumed to yield a positive value. Unless otherwise mentioned, we assumeβ ≤ 2 in
what follows.

Forming the time averagesη andu now reduces to forming the time averages of the above complex roots:

[η, u] = [ηns , u
n
s ]r1,2(α).

Considering the simplest case of extended trapezoidal rule for the time averaging,

w0 = wM =
0.5
M , wm =

1
M , 1≤ m <M, (9)

r1,2 =
M∑
m=0

wmr
m
1,2 =

rM1,2 − 1

2M
r1,2 + 1
r1,2− 1

, (10)

where the formula for the summation of a geometric series has been used. Then from (8), the expressions
for r1,2 can be simplified into

r1,2 ≡ rr ± iri =
1
M cot

δ

2
sin

δM
2

exp
(
± δM

2

)
. (11)

A simple discretization of (6) over the long time step∆t that is second-order accurate in space and time is

ηn+1
si = ηnsi −

Mβ

2
(ui+1− ui−1), (12a)

un+1
si = usi −

Mβ

2
(ηi+1− ηi−1), (12b)

where the second-order time accuracy comes from identifying the averaged values ofu andη on the right-
hand side of (12) as representative first-order estimates ofus andηs at timen + 1

2. Following the standard
procedure of von Neumann linear analysis, the necessary condition for the existence of a solution leads to
the following complex amplification factorsR1,2 over the time step∆t:

R1,2 = 1± iMαr1,2(α), (13)

where the plus sign goes withr1 and the minus sign goes withr2 to consistently account for the right-going
and left-going waves. From the above it also follows thatR1 andR2 are complex conjugates, each with
magnitude|R|.

It now remains to show that|R| ≤ 1 to demonstrate the stability of the overall method. Toward this, from
(11) we have

|R|2 = 1 +
α2

4
|r|2− αri.

Thus for stability we need to show that

0≤ α|r|2
4ri

≤ 1. (14)

Manipulation of (11), however, shows that

α|r|2
4ri

=
α

2
cot

δ

2
,

and further simplification using (8) leads to

α|r|2
4ri

=

√
1− α2

4
.

Considering thatα = β sinθ, 0 ≤ β ≤ 2 and 0≤ θ ≤ π, the inequality (14) is satisfied and hence the
method is stable for anyM. The amplification factors themselves are, however, dependent onM directly
(see (13)) and through the dependence ofr1,2 onM.
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The above analysis ignores completely any slow terms in (1), which leads to the conclusion of uncondi-
tional stability of the outer loop. A more realistic example would include additional terms such as advection
and hyperviscosity, which vary on the slow scale. A more complete stability analysis of the equations with
advection added shows that the stability of the overall scheme requires the limitation of the time step of the
outer loop by a complicated function of the Courant numbers associated with gravity waves and material
advection. However the ratio of the outer time step to the inner time step,M is of the order of the ratio of
the time scales.

3.2. Extension of the Method to (1)

In analogy with (6), the full nonlinear equations for the evolution of the slow variables, i.e., the slow version
of (1), may be written in the flux form as

ηs(t) + ∆t)− ηs(t)
∆t

(
≈ ∂ηs

∂t

)
= −∇ · ηsu, (15a)

qs(t + ∆t)− qs(t)
∆t

(
≈ ∂qs

∂t

)
+ ∇ · qsu = −g′η∇η − fηẑ× u− ν4η∇4us ≡ R + Rs. (15b)

As before, the subscript s indicates that that variable varies only on the slow time scale. On the right-hand
side of (1b), though, it is clear that only the pressure forces vary on the fast time scale, the Coriolis terms are
also considered in the initial first-order integration and the ensuing averaging procedure in order to maintain
the (primary) geostrophic balance of the system.

The basis scheme for the evolution of the full equations (1) is as follows:

1. Evolve (1a) and (1b′) overM time steps using the first-order equivalent of the explicit scheme (4).
The time stepδt used in this evolution is gravity wave resolving.

2. Form the time averagesR andu as in (7).
3. Update the slow depth fieldηs using (15a):

ηn+1
s = A2(ηns , α), (16a)

whereα = (uδt/∆x, vδt/∆y), is the vector of local Courant numbers andA2 is the same operator as
in (3b).

4. Update the slow momentum fieldqs using (15b) in a similar fashion to above correctly accounting for
the accuracy of the forces (see Smolarkiewicz and Margolin, 1993):

qn+1
s = A2(qns , α) +A1(R + Rn+1/2

s , 1
2α). (16b)

These four steps are referred to as the method of averaging (MOA) in the rest of the paper. Step 1 is
referred to as the subcycle and steps 3 and 4 are termed the supercycle. The results and the efficiency gain
resulting from the above scheme is discussed in the next section. We, however, wish to point out that in
step 1 of the above description, the advection and viscous forces were considered on the fast time scale for
reasons of simplicity of description. Since these two processes clearly occur on the slow time scale, we have
computationally verified that they need only be evaluated on the slow time scale. That is, it is sufficient to
include extrapolations of these terms based on their slow time scale values in the fast time equations.

4. Simulation and Comparisons

A hierarchy of speeds exists within the monopole problem, with the gravity waves traveling at the fastest
speed of about 9 m s−1, the flow velocity reaching maximum speed of about 0.4 m s−1, and with the long
Rossby wave phase speedcl (y) ≈ βr2

l (y) reaching about 0.2 m s−1 at the southernmost latitude. Within the
MOA we would expect the supercycle, which performs advection over the long time step∆t, to be time
step limited mainly by the flow velocity, rather than by the much more restrictive gravity wave speed. In
the previous section we demonstrated the stability of MOA in handling gravity waves for any value ofM
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in the absence of advection, viscosity, and other slow terms and indicated that an inclusion of these slow
terms would lead to a maximum value ofM for which the gravity waves would be stable. For purpose of
argument, if we assume the former (that the gravity waves are stable for anyM), then the only restriction
on the supercycle time step is due toA2. Using a subcycle gravity wave Courant numberβ of 0.95 in the
subcycle, the theoretical maximum value ofM for this two-dimensional problem is estimated to be 16.

Although the boundary Kelvin waves propagate rapidly in the monopole problem, they are of very long
wavelengths—comparable with the basin perimeter—and therefore their period is long relative to the time
∆t over which temporal averages are computed. For this reason we expect that the essence of the Kelvin
wave dynamics, including their coupling to the Rossby waves that are emitted from the eastern boundary,
will be preserved. We do expect some differences between the solutions produced with the explicit code and
those produced with MOA to exist. The temporal smoothing of the advecting velocities and of the forcing
that results from the averaging done in the subcycle will result in differences in transport, though the solution
will still be of second-order accuracy in space and time ifu is at least a first-order accurate estimate ofun+1/2

s .
As FT methods are less dissipative at higher Courant numbers, a longer time step will in this respect lead to
an improvement in the accuracy of the solution.

We evaluate the effectiveness of MOA by judging the degree to which we capture the quality of the
solution demonstrated by the explicit, second-order accurate model. Consideration of a first-order accurate,
donor cell-based solution also highlights the degree to which the solution to the monopole problem depends
on the method that is used.

The MOA produces stable results at our estimated maximum value ofM = 16 when uniform weights
are used to form the average. The advective Courant number reaches 0.49 at this value ofM, indicating
that this Courant number is sufficient to limit the time step∆t. We prefer to show results atM = 8, well
within the stable region of parameter space, although results are not very different than atM = 16. The
MOA-based model was run with a coefficient of biharmonic viscosity in the supercycle equal to that of the
explicit model, no explicit viscosity in the subcycle (where we rely on the high implicit viscosity of the
first-order accurate differencing), and with weighting coefficients for the averaging as in (9).

Figure 2 shows the results for the caseM = 8 at the same three times as in Figure 1. The overall
comparison between the two figures is excellent. The Kelvin wave signal that encompasses the boundary
is well reproduced, and so are the Rossby waves that are emitted from the eastern boundary. The principal
difference between the two cases is in the details associated with the intensified western boundary regions.
For example, a close inspection of Figures 2(c) and 1(d) reveals a slightly faster disappearance of the
extremum of negative sign near the midpoint of the western boundary in MOA.

A clearer indication of the accuracy with which the Kelvin waves are reproduced is seen in the record
of the dynamic height at a point on the boundary (the midpoint of the southern boundary), in Figure 3.
The MOA reproduces the lower-frequency behaviour of the reference case well. The amplitude of the high-
frequency component of the signal is reduced in MOA. This high-frequency component disappears when
higher viscosities are used.

We use the kinetic energy, summed over the domain, as another diagnostic. The kinetic energy for the
reference case rises as the monopole impacts the western boundary, and then settles at a slightly lower level
through the time of interaction of the first, negative anomaly associated with the Rossby wave wake. The
kinetic energy time series of MOA tracks that of the reference case well at most times, as seen in Figure 4.
The difference in kinetic energies between the two cases is very small until shortly before day 200, which
was taken to be the end of the simulation in MM94. The first-order accurate case, also plotted in Figure 4,
is much more dissipative than either of the higher-order cases.

A cost analysis was performed through code profiling on a Sun Sparc 10 workstation. Relative to the cost
of the MPDATA-based reference code, the costs of running atM = 4, 8, and 16 are 0.36, 0.27, and 0.23,
respectively. The asymptotic cost limit, corresponding formally toM =∞ (which is only the limit of MOA
based on its present implementation), is 0.21. The first-order accurate explicit code has a cost factor of 0.35;
it is more expensive than the limit given above because the conservative differencing is more expensive than
the nonconservative advective-form subcycling scheme, and because we are not applying the biharmonic
operator in the subcycle. Comparison of Figures 1, 2, and 5 clearly demonstrates that the MOA-produced
result resembles that of the second-order accurate code much more than that of the first-order accurate code.
Consideration of the dynamic heights recorded in Figure 3 and of the kinetic energy recorded in Figure 4
reinforces this conclusion.
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Figure 2. Dynamic pressure anomaly produced through application of MOA. Contour intervals are as in Figure 1.

Figure 3. Dynamic pressure anomaly time series at a point located
at the midpoint of the southern boundary, sampled every 72,000 s.
The reference and MOA cases are overlaid, with MOA being the
smoother of the two curves. The time series corresponding to a
second MOA case, run with increased biharmonic viscosity of
3 × 1010 m4 s−1 and plotted with an offset of−0.05 m2 s−2, is
smoother yet.
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Figure 4. Kinetic energy, summed over the domain. Plus symbols
indicate the reference, second-order accurate case, bursts the MOA
case, and crosses the donor cell case.

Figure 5. Dynamic pressure anomaly produced through simple time stepping of step sizeδt with first-order accurate donor cell
differencing. Contour intervals are as in Figure 1.
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5. Conclusions

The presence of very fast modes in certain systems with multiple time scales requires the time step of an
explicit treatment to be much smaller than that required from accuracy considerations and this leads to
computational inefficiency. This is, for example, the case with the primitive equations used in the simulation
of the circulations of the world oceans. In this paper we have described a method of averaging for accelerating
computational simulations of such systems. We have analytically demonstrated the linear stability of the
method in a simplified context, and verified the stability of the full system through simulation.

The results obtained using MOA are comparable with those from the reference, explicit second-order
accurate code, and are much better than those from the first-order accurate code. The improved performance
is obtained without additional cost, relative to the first-order accurate model (and for about a fourth of the
cost of the second-order accurate explicit code). We are able to run our model close to the theoretical time
step limit.

In conventional primitive equation ocean models based on barotropic/baroclinic splitting, the first baro-
clinic mode generally limits the model time step to one significantly smaller than that required by an advective
Courant limit. The essential dynamics that arise from this mode are usually associated with features that
change on a relatively slow period, and hence these features will be captured by MOA, as demonstrated in
the test problem. Thus it is possible that MOA will form the basis for developing a competitive computa-
tional scheme for modeling oceans. Such an approach would also avoid the potentially destabilizing effect
of approximate modal decompositions.
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F. Mesinger, Z.I. Janji´c, S. Ničković, D. Gavrilov, and D.G. Deaven (1988): The step-mountain coordinate: model description and

performance for cases of Alpine lee cyclogenesis and for a case of Appalachian redevelopment.Tellus, 25, 444–458.
R.F. Milliff and J.C. McWilliams (1994): The evolution of boundary pressure in ocean basins.J. Phys. Ocean., 24, 1317–1338.
W.C. Skamarock and J.B. Klemp (1992): The stability of time-split numerical methods for the hydrostatic and nonhydrostatic elastic

equations.Monthly Weather Rev., 120, 2109–2127.
W.C. Skamarock and J.B. Klemp (1994): Efficiency and accuracy and the Klemp–Wilhelmson time-splitting technique.Monthly Weather

Rev., 122, 2623–2630.
P.K. Smolarkiewicz and W.W. Grabowski (1990): The multidimensional positive definite advection transport algorithm: nonoscillatory

option.J. Comput. Phys., 86, 355–375.
P.K. Smolarkiewicz and L.G. Margolin (1993): On forward-in-time differencing for fluids: extension to a curvilinear framework.Monthly

Weather Rev., 121, 1847–1859.
G. Strang (1968): On the construction and comparison of difference schemes.SIAM J. Numer. Anal., 5, 516–517.


